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Vibrational–Rotational Structure of Supersingular
Plus Coulomb PotentialA/r 4− Z/r ∗

V. C. Aguilera-Navarro,1,3 E. Ley-Koo,1,2 and S. Mateos-Cortés2

The vibrational–rotational states of the supersingular plus Coulomb potentialA/r 4 −
Z/r are variationally constructed using a nonorthogonal basis of atomic hydrogenic
eigenfunctions modulated by an exponential factor exp(−α/r ), ensuring the correct
behavior in the vicinity of the supersingularity. The construction is carried out in two
successive stages. The first stage is restricted to trial functions without radial nodes,
leading to a variational optimization of the parameters of the basis for each value of the
angular momentum. The second stage uses the complete basis to construct linear trial
functions and to formulate the variational problem in terms of secular equations, yielding
the successive vibrational and rotational states. Numerical results for the corresponding
energy levels are presented for different combinations of the intensity parameters of the
potential.

1. INTRODUCTION

Zare in his early work to explain the vibrational structure of the visible spec-
trum of molecular iodine associated with the transitionsB3∏

0+u → X1∑
0+g

(Zare, 1964), and Zareet al. (1965), in their corresponding investigation of five
band systems of molecular nitrogen, used the Rydberg–Klein–Reese method to
construct the potential functions from the spectroscopic data (Klein, 1932; Reese,
1947; Rydberg, 1931). They extended the potential curves beyond the central
range covered by such data, through a smooth joining with repulsive and attractive
segments of the form

Vrep= a

r 12
+ b (1)
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Vatt = a′

r b′ (2)

These extrapolated portions of the potential are important for the subsequent nu-
merical integration of the Schr¨odinger equation. Here, we want to call the reader’s
attention to the supersingular nature of the small separation portion of Eq. (1);
potentials of the form 1/r α are classified as supersingular forα > 2.5 (Detwiler
and Klauder, 1975; Ezawaet al., 1975; Harrel, 1977; Klauder, 1973, 1978).

Of course, the supersingular behavior of the potential functions describing
molecular interactions was recognized very early on, as illustrated by the general
m− n Mie potential (Mie, 1903),

VM (r ) = ε
[

m

n−m

(
r0

r

)n

− n

n−m

(
r0

r

)m]
(3)

and the well-known 6–12 Lennard-Jones potential (Lennard-Jones, 1924). In con-
trast the quantum mechanical studies of supersingular potentials are relatively
recent (Fern´andez, 1991; Guardiola and Ros, 1992; Solano-Torreset al., 1992;
Znojil, 1984, 1991, 1992), some of which have focused on perturbative expansions
of the ground state. More recently, such studies for the so-called spiked oscillator

Vsp–o(r ) = λ

r α
+ r 2 (4)

were performed variationally, still for the ground state only, forα = 5/2 (Aguilera-
Navarro and Ullah, 1994) andα = 4 (Aguilera-Navarroet al., 1994). In a very
recent work, the vibrational–rotational energy levels of the spiked oscillator with
α = 4 were variationally analyzed (Aguilera-Navarro and Ley-Koo, 1997), recog-
nizing the need of a systematic investigation of the vibrational–rotational structure
of supersingular potentials.

This work consists of a variational analysis of the vibrational–rotational struc-
ture of the supersingular plus Coulomb potential,

VSC(r ) = A

r 4
− Z

r
(5)

which in the notation of Eq. (3) is identified as a 1–4 Mie potential. In the next
section the variational analysis is formulated using variational trial functions con-
structed as linear superpositions of atomic hydrogenic eigenfunctions modulated
by an exponential factor exp(−α/r ), which ensures the correct behavior close to
the supersingularityr → 0. The variational analysis of the vibrational–rotational
structure of the potential is carried out in two successive stages. The first stage is
restricted to trial functions without radial nodes, leading to the optimization of the
parameters of the functions of the basis for each value of the angular momentum,
through the minimization of the energy of the corresponding states. The second
stage uses the complete basis for the construction of linear trial functions and the
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formulation of the variational problem in terms of secular equations, yielding the
variational solutions for the states with successive vibrational and rotational ex-
citations. Since the functions of the basis are not orthogonal, due to the presence
of the modulation factor, the matrix formulation of the eigenvalue problem must
take such a nonorthogonality into account (L¨owdin, 1950). Numerical results for
the variational energies of the lowest vibrational–rotational states are presented in
section 3 for a fixed value ofZ = 1 and different values of the parameterA. The
discussion deals with the validity of this type of trial function, and the prospects
of its use in the study of other supersingular potentials.

2. LINEAR VARIATIONAL ANALYSIS

The radial Schr¨odinger equation to be solved is written as[
− 1

r 2

d

dr
r 2 d

dr
+ `(`+ 1)

r 2
+ A

r 4
− Z

r

]
R(r ) = E R(r ) (6)

The variational analysis uses the basis of functions

Rnr `(r, β) = Nnr ` e−α/r−βr/nr ` M

(
−nr ; 2`+ 2;

2βr

n

)
(7)

where the reader can identify the atomic hydrogenic functions, with the charge
parameterβ andn = nr + `+ 1, multiplied by the exponential modulation factor.
The elimination of the supersingular term in Eq. (6) is ensured if the parameterα

takes the value

α =
√

A (8)

The functions of Eq. (7) form a complete basis, but not an orthogonal one because
of the presence of the modulation factor.

As anticipated, the variational solution of Eq. (6) is formulated first using
the functions of Eq. (7) without radial nodes, for whichnr = 0 and the confluent
hypergeometric functionM becomes one. In such a case the evaluation of the
expectation value of the energy in Eq. (6) is straightforward with the result

Ev=0,`(β) = −
(

β

`+ 1

)2

−
2α`

(
β

α(`+ 1)

)3/2
K2`

(
4
√

αβ

`+ 1

)
K2`+3

(
4
√

αβ

`+ 1

)

+
2
(

β

`+ 1

)2
K2`+1

(
4
√

αβ

`+ 1

)
+ (2β − Z)

√
β

α(`+ 1) K2`+2

(
4
√

αβ

`+ 1

)
K2`+3

(
4
√

αβ

`+ 1

)
(9)
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where the first term corresponds to the atomic hydrogen energy and the successive
terms in the fraction involve the expectation values of the inverse powers ofr ,
1/r p for p = 3, 2, 1, in terms of the modified Bessel functions associated with the
integrals (Abramowitz and Stegun, 1965),∫ ∞

0
xν−1 e−

γ

x−δx dx = 2

(
γ

δ

)ν/2
Kν(2

√
γ δ) (10)

The normalization integral in the denominator of Eq. (9) corresponds top = 0.
Equation (9) exhibits the explicit dependence of the energy of the states with no
vibrational excitationν = 0 and successive rotational excitations` = 0, 1, 2,. . . ,
on the variational parameterβ. According to the variational principle the best
energies are the minimum energies obtained from

d Ev=0,`(β)

dβ
= 0 (11)

The minimization of the energy and optimization of the variational parameter is
accomplished in a personal computer using the Mathematica program (Wolfram,
1988) to obtain Eq. (11) from Eq. (9), for chosen values ofZ, A, and`, and solving
numerically forβ.

The linear variational solution of Eq. (6) for states with any vibrational and
rotational excitations,v = 0, 1, 2,. . .; ` = 0, 1, 2,. . . , is constructed using the
basis of Eq. (7).

Rv`(r ) =
N∑

nr=0

avnr RH
nr `

(r, β) (12)

The nonorthogonality of the basis of Eq. (7) leads to the matrix form of the eigen-
value problem of Eq. (6)

Ha = E Sa (13)

wherea is the column matrix formed by the eigenvector componentsavnr , andS
is the overlap matrix of the functions of Eq. (7). The explicit forms of the matrix
elements are

〈n′r ` | nr `〉 = Nn′r `Nnr `

n′r∑
s=0

nr∑
t=0

(−n′r )s(−nr )t

(2`+ 2)ss!(2`+ 2)t t !

(2β)s+t

n′snt

× 2

[
2α

β
(

1
n′ + 1

n

)](2`+3+s+t)/2

K2`+3+s+t

(
2

√
2αβ

(
1

n′
+ 1

n

))
(14)

where the diagonal matrix elements have the value of one, corresponding to the
normalization integral, and the off-diagonal matrix elements have absolute values
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less than one.

〈n′r `|H |nr `〉 = − β
2

n2
〈n′r ` | nr `〉 − 2α`〈n′r `|

1

r 3
|nr `〉

+ 2αβ

n
〈n′r `|

1

r 2
|nr `〉 + (2β − Z)〈n′r `|

1

r
|nr `〉 + In′r nr (15)

where

〈n′r `|
1

r p
|nr `〉

= Nn′r `Nnr `
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(16a)

and

In′r nr =
4αβnr

n(`+ 1)
Nn′r `Nnr `

n′r∑
s=0

nr∑
t=0

(−n′r )s

(2`+ 2)ss!

(−nr + 1)t
(2`+ 3)t t !

(2β)s+t

n′snt

×
[

2α

β
(

1
n′ + 1

n

)](2`+1+s+t)/2

K2`+1+s+t

(
2

√
2αβ

(
1

n′
+ 1

n

))
(16b)

The determination of the energy eigenvalues and eigenvectors in Eq. (13) makes
use of the diagonalization of the real symmetric overlap matrixSby an orthogonal
matrix P,

PSP̃ = d (17)

yielding positive eigenvaluesdi . The eigenvalue problem becomes

(d−1/2P H P̃d−1/2)(d1/2Pa) = E(d1/2Pa) (18)

where the matrix to be diagonalized

H ′ = d−1/2P H P̃d−1/2 (19)

is real and symmetric, and the eigenvectors

9 ′ = d1/2Pa (20)

are the intermediate step to obtain the eigenvectors of Eq. (13)

a = P̃ d−1/29 ′ (21)

Equations (14)–(16) allow the numerical implementation of the construction and
diagonalization of the matrices of Eqs. (17) and (18). The numerical results for
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the vibrational–rotational energiesEv` from Eq. (18) are reported in the following
section.

3. NUMERICAL RESULTS AND DISCUSSION

The numerical results of the optimization of the variational parameters of
the modulated hydrogenic trial functions, and the associated energies for radially
nodeless states are presented in Table I, for the fixed value ofZ = 1 in Eq. (6)
and the value ofα from Eq. (8). The successive columns contain the intensity
parameterA of the supersingular term, the orbital angular momentum quantum
number̀ , and the optimized values of the parameterβ and the energiesE0,` from
Eqs. (9) and (11).

A systematic trend can be identified from the numbers in Table I. As the
intensity parameterA of the supersingular term becomes smaller, the potential of
our interest in Eq. (5) tends to the pure Coulomb potential. Correspondingly, the
energy levels of thè = 0, 1, 2 states tend to the hydrogenic levels asA takes on
smaller values; forA = 0.0001 they are quite close to the values−0.25,−0.25/22,
and−0.25/32, characteristic of the hydrogen atom with a nuclear chargeZ/2.
Undoubtedly, the lower angular momentum states are the most affected by the
presence of the supersingular term in the potential; its effect on the higher an-
gular momentum states is increasingly diminished. This behavior is numerically

Table I. Successive Entries Correspond to Intensity ParameterA of the Supersingular Term, the
Orbital Momentum Angular̀ , the Optimized Parameterβ from Eqs. (9) to (11), and the Best

EnergiesE0` from the Same Eqs. (9)–(11)

A ` β E0`

0.0001 0 0.4910626869972242 −0.245416062
1 0.5004090585713405 −0.062499543
2 0.5001109015403303 −0.027777772

0.01 0 0.4417940838972697 −0.218082862
1 0.5035416500133421 −0.062462114
2 0.5010904177064952 −0.027777238

1.0 0 0.3112405646772868 −0.138325359
1 0.5103795011960180 −0.060669475
2 0.5092554676490551 −0.027729914

25 0 0.2089689867723217 −0.076567812
1 0.4556304289578258 −0.050321472
2 0.5222653550125408 −0.026972985

100 0 0.1715447244001531 −0.055953927
1 0.4002444926046950 −0.042000510
2 0.5140164787822753 −0.025583677
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Table II. Energy EigenvaluesE0` from the Diagonalization of Eq. (18)
from Matrices of Different DimensionN × N, Illustrating the Convergence

Pattern forA = 0.0001

N E0s E0p

1 −0.245416062122 −0.062499542953
10 −0.245474657314 −0.062499702318
15 −0.245493734657 −0.062499795263
20 −0.245499432819 −0.062499807825
25 −0.245500179211 −0.062499814278
30 −0.245501719251 −0.062499816655
35 −0.245501727189 −0.062499817461
40 −0.245501731237 −0.062499831625

reflected by the decreasing difference and increasing closeness of the charge pa-
rameterβ → Z/2, asA→ 0.

The convergence of the energy eigenvaluesE0,` for ` = 0 and 1, andA =
0.0001, obtained from the diagonalization of Eq. (18), is explicitly illustrated in
Table II as the dimensions of the corresponding matrices increase. The numerical

Table III. Entries Correspond to the Intensity ParameterA of the Supersingular Term, and
Linear Variational EnergiesEv` of the Successive Vibro-Rotational States

A E0s E1s E2s E3s

0.0001 −0.2455017 −0.0624851 −0.0277752 −0.0156232
0.01 −0.2210285 −0.0614360 −0.0273129 −0.0152913
1 −0.1495349 −0.0479544 −0.0217006 −0.0123192

25 −0.0870562 −0.0330160 −0.0157534 −0.0090969
100 −0.0638181 −0.0262348 −0.0131638 −0.0076754

A E0p E1p E2p E3p

0.0001 −0.0624998 −0.0277762 −0.0156239 −0.0099992
0.01 −0.0624742 −0.0277693 −0.0156213 −0.0099981
1 −0.0607221 −0.0272018 −0.0153681 −0.0098599

25 −0.0591760 −0.0238182 −0.0138866 −0.0090883
100 −0.0478551 −0.0209881 −0.0125968 −0.0071219

A E0d E1d E2d E3d

0.0001 −0.0277777729 −0.0156247253 −0.0099997412 −0.0069443361
0.01 −0.0277774 −0.0156242 −0.0099992 −0.0069441
1 −0.0277438 −0.0156089 −0.0099913 −0.0069393

25 −0.0270638 −0.0152925 −0.0098218 −0.0068381
100 −0.0256810 −0.0146659 −0.0094889 −0.0066413
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construction of matrix elements of Eqs. (15) and (16), and the diagonalization of
Eq. (18) were implemented with the Fortran program. The converged results for
40× 40 matrices for the different values of the intensity parameterA, and the
successive vibrationalv = 0, 1, 2, 3 and rotational̀= 0, 1, 2 quantum numbers
are shown in Table III. The reader can check that the systematic trend of theE0,`

eigenenergies, asAchanges, recognized from Table I and described in the previous
paragraph, is extended to the vibrationally and rotationally excited levels.

The modulation exponential factor in the basis of Eq. (7) has ensured the
correct behavior of the trial function of Eq. (12) forr → 0 in the present inves-
tigation. The study of other supersingular potentials must also ensure the proper
behavior of the wave-function at short distances. If the supersingular potential in
Eq. (6) is of the formA/r n, a modulation factor exp(−α/r s) with 2s+ 2= n, and
α = √A/s will ensure such a behavior.
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